PHYSICAL REVIEW E

VOLUME 51, NUMBER 6

JUNE 1995

Microscopic boundary layer model for a particle in entangled polymers:
Steady-state particle diffusivity
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A scheme for the microscopic theory of particle motion in a liquid of entangled polymers is presented.
It is based on the model of a microscopic boundary layer, which appropriately combines a chain-
dynamical description of microscopic response in particle-polymer interface with a hydrodynamical
description of collective response in the polymer background beyond the interface. The scheme is ap-
plied to calculating the steady-state diffusivity of the particle.

PACS number(s): 61.41.+e, 66.30.Jt, 83.10.Nn, 83.20.Lr

I. INTRODUCTION

The dynamics of small particles dispersed in a liquid of
entangled polymers is complicated in view of many-body
dynamics of both the polymers and particles. Even in the
simplest case of monodisperse spherical particles at very
low concentration so that the interaction between the
particles can be neglected, the particle-polymer interac-
tion in the dynamical context remains a formidable prob-
lem to handle.

For large (spherical) particles suspended in a host
liquid of viscosity 71 at an infinite dilution, a number of
hydrodynamic results are well known. The diffusivity of
a particle is given by the Stokes-Einstein relation [1]
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where kp is the Boltzmann constant and {3 =677R is the
friction coefficient of the particle of radius R. The as-
sumption behind this equation is that the particles are
large enough to permit treatment of the background
liquid as a continuum subject to the no-slip boundary
condition. Therefore they do not incorporate microscop-
ic details of the particle-polymer interface, which may be
crucially important for the case of small particles ap-
proaching the mesh size of the polymers. To our
knowledge, very little to date has been done toward gen-
eralizing the hydrodynamic results to the case of a small
particle of arbitrary size. It is this case that we consider
here.

An approach relatively simple but sensible enough to
include the continuum limit as well as the interface struc-
ture which we introduce here is the model of the “micro-
scopic boundary layer.” This model was developed by
Hynes, Kapral, and Weinberg [2] and Sung and Stell [3]
for the problem of small-particle diffusion in the back-
ground of a small-molecule fluid. According to the mod-
el, the short-range dynamic interaction (collisional dy-
namics) between the particle and the background (fluid)
within the interface is described in microscopic detail,
while the long-range response of the background beyond
the interface is treated collectively using hydrodynamic
description. The key of the model is the generalized
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boundary condition obtained by matching these two
descriptions at the outer boundary of the microscopic
boundary layer. The model gave a successful description
of short-range caging and long-range hydrodynamic feed-
back of the background, yielding an accurate estimate of
the particle diffusivity for various ranges of particle size
and fluid density [3]. When applied to a particle in a po-
lymer, this model can be regarded as a polymer-dynamic
analog of the Bethe-Peierls model [4], in the sense that
the short-range interaction induced by the interface
chains adsorbed on the particle and entangled with the
background is treated microscopically, with the effect of
all the distant chains upon the particle being treated only
through a mean field (Fig. 1).

Our presentation of this work is as follows. In Sec. II,
we construct the microscopic boundary layer specific to
our polymer problem. On the basis of the elastically
effective surface chains (ESC’s) we determine the basic
parameters of the boundary layers and construct the gen-
eralized boundary condition to couple the dynamics of
the particle and ESC’s to the background. While in this
paper we are primarily concerned with development of
the microscopic boundary layer model, in order to
demonstrate its utility we apply these ideas to the prob-
lem of particle diffusion. Our development of the theory
will be focused on the case of a spherical particle of arbi-
trary size and polymers of monodisperse molecular
weight arbitrary but large enough to induce entangle-
ments. Also it will be focused on the linear transport, the
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Microscopic Boundary Layer
FIG. 1. The schematic picture of the microscopic boundary
layer model.
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steady-state diffusivity in particular, relevant to near-
equilibrium situations where the fluxes and gradients are
related linearly. The theory can be applied to the poly-
mers not only in melts but also, under certain conditions,
in solutions.

II. MICROSCOPIC BOUNDARY LAYER
AND GENERALIZED HYDRODYNAMIC
DESCRIPTION

The frictional force on the particle is dominantly due
to the elastically effective surface chains, defined as the
chains that remain grafted to the surface of the particle
and entangled in the background chains at both ends, re-
spectively, during the deformation and flow. We assume
that such ESC’s exist, either in chemical or in physical
origin. The ESC’s at equilibrium are constructed as
shown in Fig. 2; the dangling chains and the loops not en-
tangled in the background are not counted as such, and
the number of ESC’s is four in the case of Fig. 2.

The configuration of an ESC is, then, modeled as the
particle-avoiding random walk that starts at a point
7’0=R;’1\’0 on the surface and arrives at a position 7 after
Ny steps without arriving at the surface on the way (Fig.
3). The problem is formulated in terms of the probability
density Pp(7) (1<<N =N;) with which the chain is
found to be at 7 after N steps, subject to the boundary
condition

Py(F)=0 for 7 on the surface (r=R) . )
Under the assumption that the chain is ideal, Py(7) is
governed by the diffusion equation

d o b?
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where b is the Kuhn step length. To solve for Py(7), we
devise an image method, like that in electrostatics, where
we superimpose two (Gaussian) solutions of Eq. (3):

V2P (7) 3)

Py(F)=q exp[—a (F—ry F?o )]
+q_exp[—a_(F—r_1y)] . 4)

Here g, and g_ are the weighting factors for the proba-
bilities of random walks that start at » , and its image r _
(Fig. 3) which are positioned just outside and inside the

Entanglement
(link)

FIG. 2. Construction of the elastically effective surface
chains (ESC’s).
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FIG. 3. An image method for calculating Py (7) of an ESC.

surface in the immediate vicinity of 7, and along the nor-

mal direction (;\TO ), and arrive at 7, respectively. Here
a,=3/2R% and R} =Nb? is the mean-squared distance
that the chains were to have in the absence of the particle
and the background entanglements. To meet the bound-
ary condition [Eq. (2)], one must have

"+ __ R

R -7 (5)
a,R*=a_r* , (6)
g-="4q9+ . (7)

From this, one obtains for an infinitesimally small but
positive value of €

a
—=1+42€¢, (8)
ay

r.=R(l1te) ,

and, finally, the probability density with which an ESC
with N, segments terminates at the position 7

Py (F)=N(r*—R*exp[ —R, X7 —7,)*] . 9)

Here N is the normalization constant and R
= \/2Nsb2/ 3 is two times the radius of gyration of a free
ideal chain with N, segments, which serves as a charac-
teristic length of the polymers in our problem. In Fig. 4,
the probability PNS(T") is plotted for various values of
R /R;. In the large-particle limit, R /R, — o0, we recover
the result of DiMarzio [5] for a flat surface,

Py (F) < (F-7lg—R)exp[ — R, AF—7y)?] . (10)

On the other hand, in the small-particle limit, R /R; —0,
we find an isotropic distribution,

2
r

R

Py (7)< r’exp (11

s

It is not surprising to find a deviation of the distribution
from Gaussianity, which is nothing more than a charac-
teristic of ESC defined as the particle-avoiding random
walk.
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FIG. 4. The probability distribution Py (¥) for an ESC. The
starting point of ESC is 7,=(0.0) and all the lengths are in units
of R,. (@) R/R;=5. (b) R/R;,=1. (c) R/R;=0.1.

A. The boundary layer parameters, a and K and o

The free energy A of an ESC with the ends at 7 =R%0
and 7is

A(F)=—kgT lnPNs(?)-Fconst

=kyT{R, 2(¥—R#y)*—In(r*~R?)} +const ,
(12)

and the associated force on the chain end at 7 is

—

fs=—VAF)=—kyTVInPy (F) . (13)

We define the thickness a of the microscopic boundary
layer to be the radial distance from 7, to the position 7*
of 7 where A is minimized [i.e., where PNS(?) is maxim-
ized]. This definition, a =r* —R, enables us to determine
it as a root of the cubic equation

2
= | @+2R)—(a+R)=0. (14)

s
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FIG. 5. The boundary layer thickness a (in units of R;) vs
R /R;.

For infinitely large and small particle limits, it is ob-
tained, respectively, as

a,=V'1/2R, , (15)
ay=R, . (16)

The boundary layer thickness a defined in this way is
plotted in Fig. 5 as a function of the particle’s radius R.
It is interesting to observe that, with N, (or R;) fixed, the
a does not vary appreciably with R, especially for the
values of R larger than R, say, by about ten times. With
the end at the position 7*, the chain has the minimum
free energy and suffers no force. Associated with a small
deviation 8X of the end point away from 7* is the chain
force f, on an ESC given as

fs=—K-8x . a7
The entropic spring constant tensor Kis given as

K=VVAF|, .,

P=7*=(R+a)n,
. kgT R <« a 2:\.::
=2 Rsz ;“+_—R1+2 R_s Rohg
< A A
=Ko1+K nyn, , (18)
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FIG. 6. The spring constants K, and K,
ksT/R})vs R/R,.

(in units of
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where
2k, T
=2 R_ (19)
R; a+R
4k, T 2
=2 |4 20)
R; R,

are the isotropic and the anisotropic spring constants. As
shown in Fig. 6, the constant K, approaches zero for
small particles but approaches K; for large particles.

Another important parameter in our theory is the
number of elastically effective surface chains within the
boundary layer. We suppose that the a, the number of
ESC’s per unit area counted at the outer boundary sur-
face (at r=r* =R +a), hereafter termed S, is uniform
over the surface.

The parameter a depends upon the surface chemistry
as well as the polymer, but it can be presumed to be an
independent variable. The parameters N, and a are inter-
dependent functions of R and a as well as the polymers in
bulk.

B. The generalized boundary condition and hydrodynamics

Now consider the dynamic situation, in which the par-
ticle is moving while ESC’s remain attached on the sur-
face and entangled with the background chains (Fig. 7).
In the steady state, Eq. (17) is replaced by the expression
for the frictional force,

fi=—K-rpli—V—QXRiH,], 1)

where # is the average velocity of the entanglement [at
the point 7=(R +a)ﬁo] with which the ESC is engaged
and V, Q are the average translational velocity and the
rotational velocity of the particle. Within the linear
response regime near equilibrium we consider here, the
rotation is not coupled to the translation and will be
neglected for our problem of translational diffusion. The

Boundary

FIG. 7. The configurational change of an ESC during 7,
coupled both with a reptating chain and the particle in motion.
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time 7, is the time during which a background chain
remains engaged with an ESC (Fig. 7). We assume that it
is the reputation time or disengagement time of an entan-
gled chain in the bulk given by the theories of de Gennes
[6] and Doi and Edwards [7] and is given by

£Nb*

=— N’ (22)
12k TR

D

or experimentally 7, N 3.4 Here, N is the number of
segments in the chain in the bulk, §; is the (Rouse) fric-
tion coefficient of a segment, and R, is the chain length
between the adjacent enlargements. The strong depen-
dence of 7, on N implies that, for long polymers, the fric-
tional force on a particle is dominated by the effect of en-
tanglements and is indeed given by Eq. (21).

Supposing that the a, the surface number density of
elastically effective surface chains, takes the steady state
value, the chain statistical force per unit area at an arbi-
trary point positioned at ¥=(R +a)7 on the outer sur-
face S is given by

—>

F=—aﬁ-TD(E—I7) . (23)

Here ﬁ, " take the values evaluated at the point. Now,
in the viewpoint of the background polymers beyond the
boundary layer, the force is to be regarded as the hydro-
dynamic stress within our avowed theoretical scheme:

F=1n&. (24)

In the above, & is the hydrodynamic stress tensor at the
point with a Cartesian component

0y =pd;—n(Viu;+V,u,) (i,j=1,2,3) . (25)

Here p is the static pressure, 7 is the steady-state and
zero-shear-rate viscosity of the background polymer fluid
(melt or solution), and # is the fluid velocity. With this
fluid velocity identified as the average velocity of the en-
tanglement at the point 7=(R +a)7 at the outer bound-
ary, matching Eq. (23) with Eq. (24) yields the generalized
boundary condition on S,

—aK rp(i—V)=1-5 . (26)

The condition provides a machinery to describe the cou-
pled dynamics of the particle and the background poly-
mers, incorporating the microscopic interface chain effect
hydrodynamically in a self-consistent way.

The next task is to solve, for the bulk region r >R +a
but subject to the boundary condition [Eq. (26)], the hy-
drodynamic equation

V-&=0, 27
supplemented by the condition of incompressible flow
V-i=0. (28)

Equations (27) and (28) are natural consequences of the
conditions of linear and steady-state flow, to which we
confine ourselves here.
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II1. STEADY-STATE DIFFUSIVITY
OF A PARTICLE IN ENTANGLED POLYMERS

In this section, we apply the scheme of generalized hy-
drodynamics developed in the foregoing section to the
problem of diffusivity of a particle of an arbitrary size in
a liquid (either a melt or a solution) of entangled poly-
mers. The diffusivity of the particle is related to the fric-
tion coefficient via the Einstein relation

kT
¢

The friction coefficient § is determined from the drag on
the particle, which is the stress integrated over the outer
boundary (S, ); using Egs. (23) and (24), the drag is given
as

(29)

arp § (@—V)Kds=—§, 5 ds

=—¢V, (30)

if the particle is set into motion with a velocity V in the
polymer fluid initially at rest.

The procedure of solving the hydrodynamic equations
for the friction is nothing more than the usual one of
Stokes flow [8], except for our generalized boundary con-
dition. We only quote our result for the fluid velocity
field for » > R +a subject to the boundary condition [Eq.
(26)]:

1 P (RPN
>N — A 1__ 1 3
u(r) C r 3Br V
+% [Ar—3+Br‘5](r7-?)?, 31
where
K,
A=3(R+a)y {6+y+——(2+y) |, (32)
0
Kl
B=—3(R+a)6+y+—7 1, (33)
K,
K,
c=2 18+15y+2y2+K—(67+2'y2) . (34)
0

Here y =Kya7p(R +a)/n. Using Eq. (19) this parame-

ter can also be written as
2k TT

= —‘—E—D“aR

(35)
Rln

14

As the result of integrating the hydrodynamic response
for § in Eq. (30), we find

&= éflfg , (36)
where
K,
Ep=6mn(R +a) |[1— (37

Ko(6+y)+K,3+y) |’
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£,=4m(R +aYaK 1p | >+ L | (38)
PPk, 6+y

For the y defined in Eq. (35), we note that n=G 1, where
G=cb?%ky T /R? is the plateau modulus of the polymers,
¢ is the segment number density (concentration), and R,
is the root-mean-squared distance between entangle-
ments. Then, we can rewrite

_ R
Y= R—c , (39)
where
2
1 Rs Cb2
¢ 2 |R, a “o

is a crossover length which has, if any, weak particle-size
dependence.

Let us confine ourselves to the condition R >>a, as is
usual with colloidal particles larger than 0.1 pm, with
boundary layer size a less than 100 A. In these cases, our
hydrodynamic treatment of the background polymer is
expected to be at its best. Then, from Egs. (19) and (20),
we have K, /K| ~1 and

e 2y

En 3

which is almost linearly increasing with y.
Therefore, for particles small so that ¥ <<1 (but still
R >>a), we have §, <<{, and

1—1/(9+2y) “b

1+(2+y)/(6+7y) l

E~¢,~4nR%ar, |Ky+— =————71,aR?, (42)

3 3a?

167k, T
lKll_ B

where we used Egs. (19) and (20) along with Eq. (15).
Equation (42) accounts for the friction caused entirely by
the elastically effective surface chains which remains en-
tangled during the reputation time 7,. Reasonably
enough, it is proportional to 7p, a as well as R2. All the
distant chains beyond the boundary layer do not affect
the friction at all for this case of small particles. In con-
nection with this short-range nature of the background
polymer effect, it is important to note that the hydro-
dynamic disturbance as manifest in #(7) [Eq. (31)] tends
to be also short ranged [#(¥)~r 3] for small particles
(y <<1), compared with that of the Stokes flow, for
which @ ~r 2.

On the other hand, for large particles (y >>1), we find
£, >>¢&;, and

=& —>Es=6mR , (43)

the Stokes friction we expect to recover in this limit.
This result is entirely insensitive to the microscopic de-
tails of the interface, as expected, provided that the chain
anchorage a exceeds a certain critical value [13].

To better appreciate the dynamics involved for the par-
ticles of intermediate size, we consider the diffusivity,
which is given via the Einstein relation using the friction
coefficient [Eq. (36)] as
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kgT
D= =D,+D, , (44)
4
where
kgT kgT
D,= and D, = (45)
ge gh

The remarkable additivity of two diffusion constants, typ-
ical of the mode-coupling theory [9] and similar to the
case of the particle in small-molecule fluids [2,3], implies
that two dynamical processes are involved. The first one
is the disengagement (constraint release) of elastically
effective surface chains from the entanglements during
the time 7. The other one is the relatively slow process
of the long-range hydrodynamic feedback of the distant
chains. Since these dynamic modes operate on distinct
time scales, the diffusivity appears to be the sum of their
contributions, as will be more evident in our forthcoming
paper on the velocity autocorrelation function of the par-
ticle. For contrast, it is worthwhile to note that the self-
diffusivity of a polymer is also given as the sum of the
short-range constraint release and the tube release contri-
butions [10].

For large particles (y >>1), the diffusivity [Eq. (44)] ap-
proaches the hydrodynamic result of Stokes-Einstein
[Dsg in Eq. (1)],

6mnR

For small particles (y <<1), however, the disengagement
of ESC dominates the hydrodynamic feedback, yielding

D~D,—»Dg= <RL. (46)

3¢ ) ip-2qp-2
D:De_’F’rD a 'R <R . (47)
T

For arbitrary size, the two dynamical processes behind

W. SUNG AND MIN GYU LEE 51

D, and D, compete as shown in Fig. 8, which plots
Dgy /D as a function of y.

Although not conclusive yet, it is encouraging to find
that these two particle-size dependences were observed
experimentally [11], and it would be interesting to verify
also other theoretical aspects predicted here. The cross-
over in the different size dependence (associated with the
two dynamical processes mentioned above) occurs
around y =1 corresponding to the particle radius R ~R,.
[Eq. (40)].

IV. CONCLUSION

We modeled the microscopic boundary layer to de-
scribe the dynamics of a spherical particle in a liquid of
entangled polymers. To this end, we introduced the
elastically effective surface chain as the particle-avoiding
random walk and determined the boundary layer size.
By matching the dynamics of the ESC’s to the hydro-
dynamics of the distant chains, we established the gen-
eralized boundary condition, subject to which the back-
ground response is to be calculated in a self-consistent
manner.

To demonstrate its utility, we applied the model to the
problem of steady-state diffusivity of the particle of arbi-
trary size. The model recovers the Stokes-Einstein result
in the large-particle limit and gives a very reasonable re-
sult for small particles. For the general case, we found an
analytical expression which encompasses the short-range
(caging) dynamics of the particle with the anchored chain
entangled with the background as well as the long-range
dynamics of hydrodynamic feedback, best represented in
small- and large-particle limits, respectively.

Further application of the model is at hand. In forth-
coming papers, we will investigate the particle dynamics
on various time scales as probed by the velocity auto-
correlation function and the viscoelastic effect of the par-
ticle suspensions in polymers. Also of interest are the
slippage problems [12,13] of entangled polymer liquids
flowing on a wall, on which our model has some bearing
when the presence of ESC’s is unavoidable. From vari-
ous studies of these aspects, it appears that the micro-
scopic boundary layer model provides a useful and
powerful analytical means of implementing the dynami-
cal interaction between polymers and the particle or the
surface.
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Microwcopic Boundary Layer
FIG. 1. The schematic picture of the microscopic boundary
layer model.



